Numerical Differentiation Based on Sampling Time Using Time Series Sampled Data.

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time Series Analysis for Irregularly Sampled Data

Many spectral estimation methods for irregularly sampled data tend to be heavily biased at higher frequencies or fail to produce a spectrum that is positive for all frequencies. A time series spectral estimator is introduced that applies the principles of a new automatic equidistant missing data algorithm to unevenly spaced data. This time series estimator approximates the irregular data by a n...

متن کامل

Missing data imputation in multivariable time series data

Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...

متن کامل

Spectral Analysis of Irregularly Sampled Data with Time Series Models

Slotted resampling transforms an irregularly sampled process into an equidistant missing-data problem. Equidistant resampling inevitably causes bias, due to aliasing and the shift of the irregular observation times to an equidistant grid. Taking a slot width smaller than the resampling time can diminish the shift bias. A dedicated estimator for time series models of multiple slotted data sets w...

متن کامل

Learning Regulatory Networks from Sparsely Sampled Time Series Expression Data

We present a probabilistic modeling approach to learning gene transcriptional regulation networks from time series gene expression data that is appropriate for the sparsely and irregularly sampled time series datasets currently available. We use a clustering algorithm based on statistical splines to estimate continuous probabilistic models for clusters of genes with similar time expression prof...

متن کامل

Discrimination of time series based on kernel method

Classical methods in discrimination such as linear and quadratic do not have good efficiency in the case of nongaussian or nonlinear time series data. In nonparametric kernel discrimination in which the kernel estimators of likelihood functions are used instead of their real values has been shown to have good performance. The misclassification rate of kernel discrimination is usually less than ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Shokubutsu Kojo Gakkaishi

سال: 1998

ISSN: 1880-3555,0918-6638

DOI: 10.2525/jshita.10.166